

MASTER OF SCIENCE IN FOOD SECURITY AND CLIMATE CHANGE (MS FSCC)

Core, Specialization, and Elective Courses of the MS FSCC

The Master of Science in Food Security and Climate Change (MS FSCC) is a joint degree developed under the ERASMUS+ Capacity Building for Higher Education funding from 2016-2019. All Core Courses and the six Core Specialization Courses have been developed jointly by the member universities of the Southeast Asian University Consortium for Graduate Education in Agriculture and Natural Resources (UC): Kasetsart University (KU) in Thailand, Universiti Putra Malaysia (UPM) in Malaysia, the University of the Philippines Los Baños (UPLB) in the Philippines, Institut Pertanian Bogor (IPB) and Universitas Gadjah Mada (UGM), both in Indonesia.

Project Members:

PROGRAMME GUIDE

To be awarded the degree of Master of Science in Food Security and Climate Change, a student needs to finish 40 units or credits within the span of four semesters (or two years), broken down as follows:

Courses	Credit
Core Courses	15
Specialization Courses	13
Thesis	12
TOTAL	40

PROGRAMME STRUCTURE

First Year				
1 st Semester 2 nd Semester				
12 units core courses	3 units core courses 9-10 units of specialized courses			
Secon	d Year			
1 st Semester	2 nd Semester			
3-4 units of specialized courses3 or 6 units of thesis	3 or 6 units of thesis			

CORE COURSES

COURSE NO.	COURSE TITLE
FSCC 501	Changing Climate and Its Impacts on Natural Resources,
	Agriculture and Food Security
FSCC 502	Food Security and Food Systems in a Dynamic Environment
FSCC 503	Impact Assessment and Evaluation of Projects and Policies
FSCC 504	Sustainability Assessment in Agricultural Production and Food
	Processing (MS FSCC Summer School)
FSCC 591	Research Methods
FSCC 597	Seminar

PROGRAMME CORE COMPETENCIES

All graduates of the MS FSCC programme are instilled with six programme core competencies. These programme competencies are as follows:

- 1. Assess biophysical mechanisms of contribution to, adaptation to and mitigation of climate change in agriculture and food processing
- 2. Capacity to assess any technical production system (farming, forest, food processing) from a sustainability point of view
- 3. Be able to command studies, or implement assessment of public policies and technologies on both production and sustainability point of view
- 4. Capacity to identify problems and research question, and to set up an appropriate mechanism of research that can respond to the question
- 5. Capacity to identify issues, concerns, challenges and assess food security situation at different level
- 6. Capacity to effectively communicate and manage projects and institutions

Course Title: Changing Climate and Its Impacts on Natural Resources, Agriculture and Food Security

Course Prerequisite: None

Course Description: This course encompasses the science of climate change, its causes, signs, and impacts on natural resources and agricultural systems; mitigation and adaptation strategies are also covered.

Course Credit: 3 units

Course Goal: Upon completion of the course, the student should be able to assess biophysical mechanisms that contribute to climate change, the impacts of these changes, and what adaptation and mitigation options are available for the agriculture and natural systems.

Course Outcomes:

At the end of the course, the student should be able to:

- 1. Discuss the science of climate change and its observed evidences at the global and regional scales;
- 2. Explain the anthropogenic drivers of climate change, including biophysical and socioeconomic processes resulting to GHG emissions; different climate scenarios and projections;
- 3. Examine the impacts of changing climate to natural resources, agriculture and food security; and
- 4. Discuss adaptation and mitigation strategies in natural resources, agriculture and food security.

Course outcomes	Professional profile			Core Competencies					
	PM	DO	RE	1	2	3	4	5	6
CO1 Discuss the science of climate change and its observed evidences at the global and regional scales.	/	/	/	/			/		/
CO2 Explain the anthropogenic drivers of climate change, including biophysical and socioeconomic processes resulting to GHG emissions; different climate scenarios and projections.	/	/	/	/			/		/
CO3 Examine the impacts of changing climate to natural resources, agriculture and food security.	/	/	/	/		/	/		/
CO4 Discuss adaptation and mitigation strategies in natural resources, agriculture and food security.	/	/	/			/	/	/	/

Course Mapping

Course Outcomes

Week	Course	Topics	Teaching	Assessment	Number
	outcomes		and	tool	of hours
			Activity		
1	CO1	Introduction	Lecture	Exams,	3
		Earth and the Climate	Discussion	Assignments,	
		Systems			
2, 3	CO1	Signs of climate change	Lecture, SCL	Exams,	6
		• Temperature rise	(e.g.	Assignments	
		• Precipitation	Discussion,		
		• Extreme Events	Self study		
		• Scalevellise	Guided		
			readings)		
4, 5	CO2	Anthropogenic drivers of	Lecture	Exams	6
		climate change	Discussion	Assignments,	
		• Deforestation	Reporting	Participation	
		Population	Debates	in class	
		• Industrialization	Role playing	activities (e.g.,	
				debates, role	
6.7	CO2	Climate change	Lecture SCL	Exams	6
0, /	002	projections and climate	(e.g.	Assignments	U U
		scenarios	Discussions,	8	
			case		
			examples)		
8,9	CO3	Climate change impacts	Lecture	Exams,	6
		on natural resources	Discussions	Assignments,	
		• water and	Reporting	Case analysis,	
		• Land		in class	
		 Biodiversity 		activities (e.g.,	
		5		debates, role	
				playing, etc.)	
10,	CO3	Climate change impacts	Exams,	Exams,	6
11		on agriculture	Assignments,	Assignments,	
		Crop production	Case analysis		
		• Livestock	(SCL/PBL)		
		 Fisheries 			
		(Aquaculture.			
		open fisheries)			
12	CO3	Climate change impacts	Case analysis	Exams,	3
		on food security		Assignments	
				Case analysis,	

Course Analysis for FSCC 501: Changing Climate and Its Impacts on Natural Resources, Agriculture and Food Security

13	CO4	 CC Adaptation Strategies for Food Security Risk transfer mechanism Early warning systems and drought forecasting using remote sensing Better use of seasonal climate forecast for adjusting planting schedules Vulnerability and risk- based adaptation planning 	Field visits Lecture Discussion	Examination Assignments, Case analysis, Participation in class activities (e.g., debates, role playing, etc.)	3
14	CO4	 Mitigation Strategies to Reduce Carbon Footprint of Food Value Chain Estimating GHG emission in a value chain GHG inventory- based mitigation planning Synthesis: Way forward to sustainable food production system 	Lecture- Discussion Class exercise	Examination, Assignments,	3

Assessment	Course	Weight in final	Minimum average for satisfactory
Task	outcomes	grade	performance
Mid-term exam	1,2,3,4	30	75%
Final exam	1,2,3,4	30	
Case analysis	3,4	20	
Assignments	1,2,3,4	10	
Class	1,2,3,4	10	
participation			

Course Title: Food Security and Food Systems in a Dynamic Environment

Course Description: This course covers the concepts of food security and the food system including production and processing. The socio-economic impact to food security is also discussed.

Course Prerequisite: None

Course Credit: 3 units

Course Goal: At the end of the course, the students are expected to obtain a good understanding of food security and increase awareness of food security issues.

Course Outcomes:

At the end of the course, the student should be able to:

- 1. Understand the concepts of food security with emphasis on the four dimension of food security
- 2. Analyse information relating issues of food systems and food security at the national and international level
- 3. Assess food and nutrition security at various levels

Course Mapping:

Course Outcomes	Professional Profile			Core Competencies					
	PM	DO	RE	1	2	3	4	5	6
CO1 Understand the concepts of food security	/	/	/					/	/
with emphasis on the four dimension of food									
security									
CO2 Analyse information relating issues of food		/	/					/	/
systems and food security at the national and									
international level									
CO3 Assess food and nutrition security at various		/	/					/	/
levels									

Course Content:

Week	Course Outcomes	Topics	Teaching and Learning Activity	Assessment Tool	No. of Hours
1	CO1	I. Overview of Food	Lecture/	Exam	3
		Security and Food	Discussion		
		System			
		A. Four Pillar of Food			
		Security According to			
		FAO			
		B. Overview of Food			
		Systems			

		C. Dynamic			
		Environment			
2-3	CO1	II. Food Production	Lecture/	Quiz	6
		systems and security	Discussion	Exam	
		A. Agricultural Crops			
		Production			
		B. Livestock			
		Production			
		C. Aquaculture			
		Production			
4	CO2	III. Food Processing	Lecture/	Exam	3
		A. Overview of Food	Discussion	Assignment	
		Processing and			
		Distribution			
		B. Processing			
		Methods			
		C. Emerging			
		Technologies			
5	CO2	IV. Food Quality	Lecture/	Exam	3
		and Safety	Discussion	Assignment	
		A. Quality Assurance			
		B. Traceability system			
		C. Certification			
		D. Issues on Food			
		Safety			
6-7	CO2	V. Food and Nutrition	Lecture/	Exam	6
		Security	Discussion	Assignment	
		A. Balance diet			
		B. Human Health			
		C. Importance of			
		Nutrition Security			
		D. Food			
		Diversification as			
		affected by nutritional			
		requirements			
8,9	CO2,CO3	VI. Socio-economic	Lecture	Exam	6
		Impact of Food Security	Discussion	Presentation	
		A. Distribution and			
		food accessibility			
		B. Green supply			
		chain			
		C. Market/price and			
		climate risks			
		D. Consumer			
		preference			
		E. Food			
		diversification as			
		affected by socio-			
		economic factors			

10	CO2,CO3	VII. Food security	Lecture/ Group	Exam/	3
		initiatives	discussion	Report	
		A. Food security			
		policies			
		B. Roles of			
		organizations and			
		institutions in the			
		value chains			
		C. Capacity building			
		and empowerment of			
		stakeholders			
11,12	CO3	VIII. Assessment of Food	Lecture	Exam/	6
		Security	Presentation	Problem	
		A. Parameters of food		Based	
		security		Learning	
		B. Levels of analysis			
		(regional, national,			
		household, individual)			
		C. Assessment tools			
		and data requirement			
13,14	CO3	IX. Current issues in	Discussion	Exam/	6
		Food Security	Presentation	Problem	
		A. Agri-food Policy		Based	
		B. Trade Liberation		Learning	
		C. Food Distribution			
		D. Changing			
		consumer Preferences			
		E. Nutrition and			
		Health			

A gaogament Teals	Course	Weight in	Minimum Average for
Assessment Task	Outcome (CO)	Final Grade	Satisfactory Performance
Exam	CO1	20%	65-80% or B
Assignment (Problem	CO3	50%	65-80% or B
Based Learning)			
Final Exam	CO1 & CO2	30%	65-80% or B

Course Title: Impact assessment and evaluation of projects and policies

Course Description: Concepts, methods, and tools for environmental, social, and economic evaluation

Course Prerequisite: None

Course Credit: 3 units (42-48 hours)

Course Goal: This course encompasses theoretical and empirical tools for evaluation of actions, projects, and policies related to food security and climate change.

Course Outcomes:

After taking the course, the students will be able to:

- 1. Discuss the concepts, tools and methods related to evaluation of projects and policies
- 2. Analyze the impact of existing projects and policies related to food security and climate change
- 3. Professionally evaluate projects and policies

Course Mapping:

Course Outcomes	Professional Profile			Core Competencies					
	PM	DO	RE	1	2	3	4	5	6
CO1 Discuss the concepts, tools and	/	/	/			/			/
methods related to evaluation of									
projects and policies									
CO2 Analyze the impact of existing	/	/	/			/			/
projects and policies related to food									
security and climate change									
CO3 Professionally evaluate projects	/	/	/			/	/		/
and policies									

Course Content:

Week	Course	Topics	Teaching and	Assessment	Number
	Outcomes		Learning	Tool	of
			Activity		Hours
1-2	CO1	I. Evaluation of Projects	Lecture, group	Diagnostic	6 hours
		and Policies	discussion	test	
		• Evaluation criteria			
		• Role of			
		Assessment and			
		Evaluation in			
		Project Cycle			
		• Three pillars in			
		Sustainable			
		Development			

		(Economic,			
		Social,			
		Environmental			
		aspects)			
3-4	CO1	II. Tools and Methods for Economic Impact	Lecture, individual	Quiz	6 hours
		Assessment	exercise, group		
		Economic criteria	discussion		
		(productivity,			
		investment)			
		• Cost-benefit			
		analysis and other			
		tools			
5-6	CO1	III. Tools and Methods	Lecture,	Homework	6 hours
		for Social Impact	individual	assignment	
		Assessment	exercise, group		
		Social criteria	discussion		
		(diversity of			
		livelihood,			
		empowerment,			
		gender etc.)			
		• Social cost-			
		benefit analysis			
		(equity; micro,			
		Barticipatory			
		• Farticipatory Bural Approach			
		FGD Delphi etc			
7-8	CO1	IV Tools and Methods	Lecture	Presentation	6 hours
/ 0	001	for Environmental	individual	mark mid-	0 nouis
		Impact Assessment	exercise, group	exam (topic	
		Environmental	discussion	1-4)	
		criteria		,	
		(biodiversity,			
		deforestation,			
		land erosion etc.)			
		Technical			
		Quantifying of			
		Environmental			
		Aspects			
9-11	CO2	V. Valuation Methods	Lecture,	Presentation	9 hours
		 Market based 	individual	mark	
		methods	exercise, group		
		• Surrogate market	discussion		
		based methods			
		• Hypothetical			
		market based			
		methods			

12-16	CO3	VI. Integrating	Short lecture,	Presentation	12 hours
		Economic, Social and	field survey	and	
		Environmental Aspects	guest lecture	paper mark	
		in Impact Assessment	from various		
		• Impact	stakeholders		
		assessment on	(private and		
		existing projects	public), case		
		or policies (from	study, group		
		problem	presentation		
		identification up	and discussion		
		to final report)			

Assessment Task	Course	Weight in	Minimum Average for
	Outcome	Final Grade	Satisfactory Performance
Diagnostic and	CO1, CO2,	10%	65-80% or B
evaluation tests	CO3		
Quiz	CO1	5%	65-80% or B
Exams	CO1, CO2,	40%	65-80% or B
	CO3		
Homework	CO1	5%	65-80% or B
Paper submission	CO3	25%	65-80% or B
Oral presentation	CO1, CO2,	15%	65-80% or B
	CO3		

Course Title: Sustainability Assessment in Agricultural Production and Food Processing

Course Description: Active learning exercise to train students to assess the dynamics of change, innovation and adaptation to transitions in rural areas.

Course Prerequisite: Basic knowledge in agricultural sciences and economics. Motivation for fieldwork

Course Credit: 2

Semester Offered: Summer school (block course)

Course Goal: To acquaint students with theories, methods, and practices to understand and facilitate transitions in natural resources management. This includes the identification of appropriate entry points and the design of facilitation measures to accompany complex social, ecological and economic transitions. Students learn how to assess the diversity of farming systems and rural livelihoods, how then to accelerate change and how changes at practical level correspond with the relevant institutions and policies.

Course Outcomes:

After taking the course, the students will be able to:

- 1. Assess the agrarian situation in a delimited area
- 2. Identify and assess the dynamics of change (innovation, intensification, diversification, market integration) within the diversity of local systems
- 3. Formulate proposals for facilitating the adaptation/innovation/transition

Course Mapping:

Course Outcomes		Professional Profile			Core Competencies				
	PM	DO	RE	1	2	3	4	5	6
CO1 : Capacity of assessment of the	**	**	**		***		***		
agrarian situation in a delimited area.									
CO2: Capacity to identify and assess the									
dynamics of change (innovation,	**	**	**		**		***	*	
intensification, diversification, market									
integration) within the diversity of local									
systems									
CO3 : Capacity to formulate proposals for									
facilitating the	**	*	***				***	***	
adaptation/innovation/transition									

Course Content:

Week	Course Outcomes	Topics	Teaching and Learning Activity	Assessment Tool	Number of Hours
1A	CO1	Preparation of the field work Concepts of systems (farming, cropping, animal rearing) Innovation and change processes. Criteria of evaluation Problem identified Elaboration of questions	4 h lectures + assignments	Presentations	20
1B	CO1	Field work and permanent data analysis	Observations and surveys on the field	Reports on surveys	30
2A	CO2	Field work (cont'd) and permanent data analyzing	Observations and surveys on the field	Reports on surveys	30
2B	CO3	Organization of the conclusions and feedback sessions	Group work	Presentation at the feedback session Reports of groupwork	20

Assessment Task	Course Outcome	Weight in Final Grade	Minimum Average for Satisfactory Performance
Group presentations, groupwork		40%	С
Attitudes at fieldwork		15%	С
Presentation at feedback session		20%	D
Individual exam		25%	С

Course Title: Research Methods / Research Design and Planning

Course Description: Present analytical methods in natural, applied, and social sciences and discuss alternative scientific and methodological options. Students will be exposed to a wide range of research methods and will learn key principles of research design. The course includes practical exercises of conception of a survey and data collection.

Course Prerequisite: None

Course Credit: 3

Course Goal: To construct research proposal based on problems and/or questions and design a research plan. The students know scientific methods for data collection, data analysis, and evaluation of the results.

Course outcomes:

After taking the course, the students will be able to:

- 1. Identify problems and transform these into research questions.
- 2. Design a research plan with ethical considerations.
- 3. Construct a research proposal.
- 4. Collect, combine, and analyse data, by all kinds of means (observations, measurements, surveys, interviews, focus groups)
- 5. Evaluate results, qualitative and quantitative.

Course Mapping:

Course Outcomes	Professional Profile				Core Competencies				
	PM	DO	RE	1	2	3	4	5	6
CO1: Capacity to identify problems and	/	/	/				/		
transform these into research questions.									
CO2: Capacity to design a research plan with			/				/		/
ethical consideration.									
CO3: Capacity to construct a research proposal.			/				/		/
CO4: Capacity to collect, combine and analyse		/	/				/		
data.							, ,		
CO5: Capacity to evaluate results.	/	/	/				/		

Course Content:

Week	Course Outcomes	Topics	Teaching and Learning Activity	Assessment Tool	Number of Hours
1	CO1	Introduction	Lecture/group		3
		• The role of research	discussion		
		Research process			
		overview			

2	CO1	Problems and	Lecture/group	3
		Hypotheses	discussion/presentati	
		• Defining the	on	
		research problem,		
		formulation of the		
		research		
		hypotheses.		
		• The importance of		
		problems and		
		hypotheses.		
3-4	CO2	Literature search and	Lecture/ groupwork	6
		review	on assessing	
			different databases	
			and feedback	
5-6	CO2	Research design	Lecture/group	6
		• Experimental	work/presentation	
		research		
		(quantitative,		
		qualitative, and		
		mixed methods		
		approaches)		
		 Nonexperimental 		
		research design,		
		• field research		
		survey research		
		Sampling techniques		
		• The nature of		
		sampling		
		Probability		
		sampling design		
		 Non-probability 		
		sampling design		
		• Determination of		
		sample size		
7-8-9	CO4	Practical :	Groupwork and	9
		• choice of a	practical	
		problem		
		elaboration of		
		questions,		
		• conception of a		
		survey,		
		• sampling,		
		interviews,		
		• data analysis,		
		conclusions		
10	CO4	Assessment of the	Group discussion	3
		practical		

11	CO4	Ethical issues in	Lecture/ group	3
		conducting research	discussion/	
			presentation	
12-13	CO2	 Constructing a research proposal making a case for research using theories to underpin the research develop propositions/hypo thesis research framework/conce ptual models a fully justified research design sampling and significance of the study Resources required and a timetable for project 	Reverse pedagogy : no lecture, but readings distributed, groupworks, feedback sessions on – role of theories, progress of knowledge, elaboration of hypothesis, significance	6
		completion		
14-15	CO3	 Processing and analysis of data Qualitative data analysis and interpretation Quantitative data analysis and interpretation 	Lecture and practice on case studies	6

Assessment Task	Course Outcome	Weight in Final Grade	Minimum Average for Satisfactory Performance
A complete research proposal	CO2, CO3	40%	
Evaluation of attitudes and results of practical	CO4	30%	
Exam	CO1, CO5	30%	

CORE SPECIALIZATION COURSES

SPECIALIZATION	COURSE TITLE
AREA	
Agriculture and	Climate-smart Animal and Crop Production Systems
Animal Sciences	
Forestry	Forests and a Changing Climate
Food Science	Postharvest, Processing and Distribution in Changing Climate
Climate Sciences	Climate Risk Management for Food Security
Public Policy and	Economics and Policy Issues in Food Security and Climate
Economics	Change
	Economic Valuation for Food Security and Climate Change

Specialization Area: Agriculture and Animal Sciences

Specialization outcomes

- 1. Understand the implications to climate change and food security of current practices and recent advances in various crop /animal production systems
- 2. Describe the characteristics of a climate smart animal/crop production system
- 3. Critical assessment and analysis of the environmental, technical, and socio-economic implications of an existing and proposed animal/crop production systems
- 4. Determine site-specific climate smart options to improve sustainability of animal/crop production systems
- 5. Analyze specific issues on food security and climate change in crop/animal production issues

Core Specialization Course:

Course Title: Climate-smart Animal and Crop Production Systems

Course Credit: 3 units

Course Description: Climate smart innovative strategies and technologies in animal and crops production systems in the tropics

Core course outcomes (Climate smart AGRI)

- 1. Explain the impact of climate change in animal and crop production systems Explain the impacts of climate change in animal and crop production systems
- 2. Analyze main characteristics of climate-smart agricultural systems
- 3. Formulate plans for the full adoption of climate smart agriculture in the tropics

Course Mapping:

Course Outcomes (CO)		Professional			Core						Expected		
Course Outcomes (CO)	Profile			Competencies						Capacities			
	PM DO RE			1	2	3	4	5	6	K	S	Α	
CO1:explain the impact of				/	/								
climate change in animal and													
crop production systems													
CO2: analyze main characteristics				/	/		/	/		/	/		
of climate-smart agricultural													
systems													
CO3: formulate plans for the full				/	/	/	/	/			/		
adoption of climate smart													
agriculture in the tropics													

Course Content:

Week	Course Outcomes	Topics	Teaching and Learning Activity	Assessment Tool	Number of Hours			
	CO1	Impacts of ClimateChange in Animal andCrop ProductionA.EnvironmentB.Socio-economicC.Technological	Lecture and Self-study (e.g. case study analyses)	Exam	9			
	CO1, CO2	Elements of Climate- Smart Agricultural Systems in the Tropics	Lecture	Exam	15			
	CO2	Innovations and Technology in Climate- Smart Farming	Field Visits	Oral Report	9			
	CO3	National and Global Issues on the Use of Climate-Smart Agriculture	Seminar workshops	Case Study	15			
Exams								
				Total	48			

Specialization Elective Courses:

Practices and Advances in Crop Production Systems Course Description: Management practices and recent advances towards increasing productivity, profitability and sustainability of various crop production systems.

Crop Physiology and Environment

Course Description: Elucidation and evaluation of the response of crops to climate and other environmental changes, their effects on crop growth and productivity and implications to crop management

Crop Pests and Diseases Ecology and Management

Course Description: Practices and recent advances in plant disease and pest management; pest residues their fate in environment and ecological significance hostpest- environment relations; pest ecology and population dynamics.

Practices and Advances in Animal Production Systems Course Description: Current practices and recent developments in animal production systems.

Animal Forage, Feeds and Nutrition

Course Description: The production and utilization of pasture and fodder crops including, techniques in grassland research and cost of production; Advances in animal nutrition research and in industry practices.

Animal Physiology and Environment

Course Description: Elucidation and evaluation of the response of animals to climate change and other environmental changes, their effects on animal adaptation, body temperature regulation, and related nutritional, metabolic and hormonal functions and implications to production and management.

Agroecosystem Analysis and Design of Sustainable Crop and Animal Production Systems

Course Description: Dynamics of agroecosystem components in relation to agriculture practices, issues and concerns; analysis, evaluation and design of sustainable farming systems.

Land, Soil and Water Resources Assessment and Management in Agriculture Course Description: Analysis of environmental factors affecting land/water use; soil microbe plant interactions; land, soil and water resources management vis a vis competitive uses and ecological impacts.

Practices and Advances in Fisheries/Aquaculture Production Systems Course Description: Current practices and recent developments in fisheries/aquaculture production.

Specialization Area: Forestry

Specialization Outcomes

After completing the MS FSCC- Forestry specialization/track, the student should be able to:

- 1. Understand the interrelationship of forests, food security, and climate change
- 2. Manage basic and applied research on current issues on forests, food security, and climate change
- 3. Promote collaborative, participatory, and community based approaches to sustainable forest management for food security and climate resiliency
- 4. Apply forestry practices to address issues on food security and climate change

Core Specialization Course:

Course Title: Forests and a Changing Climate

Course Description: Analysis of the relationship between forests and climate change, their impacts and corresponding strategies for adaptation and mitigation,

Prerequisite: None

Course Credit: 4 (3-1) units

Number of hours: 3 class, 1 lab/field work/ practical

Course Goal: To enhance knowledge on forest growth and development, the relationship between forests and climate change, and analyze strategies for adaptation and mitigation

Course Outcomes

After completing the course, the student should be able to:

- 1. Discuss forest growth and development;
- 2. Analyze the relationship between climate change and forests and vice versa; and
- 3. Develop recommendations on sustainable forest management to enable communities to adapt to and mitigate climate change impacts.

Course Mapping

Course Outcomes	Pro D	ofessio Omair	nal 1s	Specialization Outcomes (Forestry Track)				
	PM	RE	DO	1	2	3	4	
CO1 Discuss forest growth and development;		/	/	/	/			
CO2 Analyze the relationship between climate change and forests and vice versa; and	/	/	/	/	/	/		
CO3 Develop recommendations on sustainable forest management to enable communities to adapt to and mitigate climate change impacts.	/	/	/		/	/		

Course Content

Lecture

	Course			No.
Week	Outcomes	Topics	TLA	of Hrs
1-2		I. Introduction to Forests	- Lecture	6
	CO1	A. Forest growth and development	- Discussion	-
		B. Factors affecting forest growth		
		and development		
		C. Silviculture and silvicultural		
		systems		
3	CO2	II. The Changing Climate	- Lecture	3
		A. Climate change and global	- Discussion	
		warming	- Video presentation	
		B. Global forest resources and land		
		use change		
		C. International agreements and		
		protocol of climate change		
		mitigation and adaptation		
4-5	CO2	III. Forests as carbon source and	- Lecture	6
		sink	- Discussion	
		A. Biogeochemical cycles		
		B. Roles and importance of forest		
		biomass		
		C. Components of forest biomass		
		D. Biomass and carbon pools		
		E. Types of GHGs from the forestry		
		sector	.	
6 to 8	CO2	IV. Impacts of Climate Change on	- Lecture	9
		Forests	- Discussion	
		A. Growth rates	- Literature review	
		B. CO_2 iertilization	and focus group	
		D. Wild fire	discussion	
		E. Dest and discoses		
		E. Fest and diseases		
9_10	CO^2	V Impacts of Forests on Climate	- Lecture	6
<i>J</i> -10	002	Change	- Discussion	0
		A Forest degradation and	- Video	
		deforestation	- Literature review	
		B. Land use and land use change	and focus group	
			discussion	
11	CO2	Mid-term Evaluation	-	3
1				1

12-13	CO3	VI. Sustainable Forests	- Lecture	6
		Management and Climate Change	- Discussion	
		Mitigation	- Video	
		A. Carbon sequestration	- Class debate	
		. Reducing Emissions from		
		Deforestation and Forest		
		Degradation		
14-15	CO3	VII. Sustainable Forests	- Lecture	6
		Management and Climate Change	- Discussion	
		Adaptation	- Video	
		A. Global initiatives	- Class debate	
		B. Regional initiatives		
		C. Local initiatives		
16	CO3	Final Evaluation		3

Laboratory/Field Work

Week	Course Outcomes	Topics	TLA	No. of Hrs.	AT
1-2	CO1	Exercise 1: Forest growth and development	- Group or individual presentation	6	Report
3	CO2	Exercise 2: International agreements and protocol of climate change mitigation and adaptation	 Literature review Case study Discussion 	3	Report
4-5	CO2	Exercise 3: Forest biomass assessment	- Field work - Group or individual presentation	6	Report
6 to 10	CO2	Exercise 4: Impact assessment	- Field work - Quantitative and qualitative analysis	15	Report
11 to 16	CO3	Exercise 5: Formulation of mitigation and adaptation strategies	 Field work Quantitative and qualitative analysis 	18	Report

Course Requirements: Examination, Report, Paper presentation

Assessment Tasks	Weight (%)	Minimum Average for Satisfactory Performance (%)
Mid-term evaluation	30	75%
Final evaluation	30	75%
Lab report/ practical exam	40	75%

Specialization Elective Courses:

Water and Watershed Management Course Description: Interception, transpiration, evaporation and sedimentation related to the quantity, quality and distribution of water as affected by forestry practices.

Landscape Structure and Biodiversity

Course Description: Landscape pattern and process; mechanisms by which it changes through time; its influence in shaping biodiversity, and implications to populations, communities, and ecosystems.

Agroforestry

Course Description: Micro-analysis and application of management principles on agroforestry farms.

Non-timber Forest Products Course Description: Properties, processing and utilization of non-timber forest products.

Forest Ecosystem Health and Services

Course Description: Forest ecosystem health concepts, indicators, assessment methods, and impacts on human well-being.

Forest Biometry

Course Description: Analysis of forest measurements; evaluation of growth prediction methods recent developments in forest mensuration and statistics.

Geospatial Methods in Forest Resources Management Course Description: Application of geographic information systems (GIS) technology in natural resources management; IS operations and spatial analysis.

Social Forestry Course Description: Perspectives in social forestry and analysis of social forestry programme.

Forest Carbon Measurement and Monitoring Course Description: The science, methods and practice of forest carbon measurement and monitoring for climate change mitigation and adaptation

Conflict Management in Planted Forest

Course Description: Analysis and management of conflicts in planted forests towards food security and climate change mitigation.

Specialization Area: Food Science

Specialization Outcomes:

- 1. Assess the contribution of food transformation in the food value chain (farm to fork) to food security and climate change
- 2. Identify problems and formulate solutions and/or recommendations to complex problems and research questions related to the importance of food quality and safety to food security and climate change
- 3. Assess the impact of the food production and processing to nutrition security and human health
- 4. Engage in life-long learning to keep pace with current developments in the field of food security and climate change as well as advance one's own professional career

Core Specialization Course:

Course Title: Postharvest, Food Processing & Distribution in a Changing Climate

Course Description: This course covers food system from postharvest, processing and distribution. Various technologies in postharvest, processing and distribution and their impact on food security and climate change will be discussed.

Course Prerequisite: None

Course Credit: 3 units

Course Goal: At the end of the course, the students are expected to obtain a good understanding of technologies in food system and increase awareness their contribution to climate change.

Course Outcomes:

- 1. Distinguish various techniques in postharvest, food processing and distribution
- 2. Differentiate the techniques and their contribution to climate change
- 3. Formulate alternatives postharvest, food processing and distribution methods to alleviate contribution to climate change

Course Mapping:

C O I		Professional			Programme					Specialization			
Course Outcomes		rome)		U	utc	om	es	-		Jute	omes	5
	PM	DO	RE	1	2	3	4	5	6	1	2	3	4
CO1:	/	/	/		/				/	/	/		
Distinguish various techniques													
in postharvest, food processing													
and distribution													
CO2:		/	/		/	/			/	/	/		
Differentiate the techniques													
and their contribution to													
climate change													

					80 C			_		
CO3:	/	/	/	/		/	/	/	/	/
Formulate alternatives										
postharvest, food processing										
and distribution methods to										
alleviate contribution to										
climate change										

Course Content:

Week	Course Outcomes	Topics	Teaching and Learning Activity	Assessment Tool	Number of Hours
1, 2	CO1, CO2, CO3	 I. Overview of postharvest handling The fresh produce agribusiness system and value chain management Quality and safety attributes of fresh horticultural produce Impact of technologies to climate change 	Lecture Site Visit	Quiz	6
3, 4, 5, 6	CO1, CO2, CO3	 II. Food Processing Thermal Non-thermal Impact of technologies to climate change 	Lecture Plant Tour	Quiz Exam Report	12
7, 8, 9	CO1, CO2, CO3	 III. Current technology in food packaging Types of packaging system Modified atmosphere packaging system Smart food packaging system Active food packaging system Impact of technologies to climate change 	Lecture Group Discussion	Quiz Oral Presentation	9
10,	CO1, CO2.	IV. Food Distribution • Food Logistics	Lecture Site Visit	Quiz	9

				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	the second se
	CO3	• Time-Temperature		Reaction	
		Abuse in the Food		Paper	
		Value Chain		_	
		Cold chain			
		• Impact of			
		technologies to			
		climate change			
13, 14	CO1,	V. Waste Management	Lecture	Quiz	6
	CO2,	Waste management	Site Visit		
	CO3	in the Food Industry			
		• Impact of			
		technologies to			
		climate change			

Assessment Task	Course Outcome	Weight in Final Grade	Minimum Average for Satisfactory Performance
Exam	CO1	15%	65-80% or B
Exam	CO2	15%	
Reports and Oral	CO3	40%	65-80% or B
Presentation			
Final Exam	CO1, CO2 &	30%	65-80% or B
	CO3		

Specialization Elective Courses:

Food Nutrients/ Nutrition

Course Description: This course covers discussion on food components as well as nonnutrient components; physiological changes and metabolism

Food Safety Management

Course Description: This course covers the concept and principles in ACCP and risk analysis of microbiological, chemical and physical hazards in foods. The methods for education of hazards in foods are discussed.

Microbiological Food Safety

Course Description: The lectures discuss conventional as well as emerging foodborne pathogens with regard to their behavior and survival in foods, the diseases they may cause, pathogenicity, transmissions, and epidemiological studies pertaining their outbreaks. The lecture will also discuss the development of risk-based food safety management and the role of microbiological risk analysis in food safety management.

Food Toxicology

Course Description: Naturally occurring food toxins, sources, mechanisms, nature, toxigenicity, of bacterial and fungal toxins as well as methods of detection.

Post-harvest Physiology and Biochemistry of Fruit and Vegetables Course Description: Biochemical and physiological changes in plant based products and their quality after harvest.

Advanced Food Packaging

Course Description: This course covers food packaging which encompasses concept and functions of packaging, food protection, packaging materials and manufacturing, packaging materials testing methods, type of failures in food packaging, forms of packaging system, packaging and application, packaging equipment, and current and future developments in food packaging.

Food Regulation

Course Description: Food laws and regulations; ethical standards; international and food laws and regulations.

Specialization Area: Climate Sciences

Specialization Outcomes:

- 1. Use different quantitative and qualitative models to determine impacts and risks of climate change to agricultural systems and food security
- 2. Be able to analyze risks faced by humans caused by climate change
- 3. Determine options (e.g. policy or actions) to address or manage risks
- 4. Apply the data and information into climate change adaptation strategies
- 5. Develop scenarios of changes, adaptations to changes
- 6. Packaging information, designing information services and communicating risks to people (e.g. early warning systems, crop advisories)

Core Specialization Course:

Course Title: Climate Risk Management for Food Security

Course Description: Tools, methods and approaches in assessing and managing climate risks, particularly those that impact food security; issues and challenges in climate risk management

Course Credit: 3 units

Course Goal: Upon completion of the course, the students should be able to gain a critical perspective and the skills in assessing and managing risks associated with climate change

Course Outcomes:

At the end of the course, the student should be able to:

- 1. Explain the concepts, principles and approaches in climate risk management;
- 2. Apply risk assessment methods and tools for climate change using spatial, temporal and other relevant data sets; and,
- 3. Recommend knowledge-based adaptation and mitigation measures for specific risks and vulnerabilities.

Course Mapping:

Course outcomes		Professional			Core				
		profile	;	Competencies				5	
	PM	DO	RE	1	2	3	4	5	6
CO1 Explain the concepts, principles and	/	/	/	/		/	/	/	/
approaches in climate risk management									
CO2 Apply risk assessment methods and tools for		/	/	/		/	/	/	/
climate change using spatial, temporal and other									
relevant data sets									
CO3 Recommend knowledge-based adaptation		/	/	/	/	/	/	/	/
and mitigation measures for specific risks and									
vulnerabilities									

Course Content

Week	Course Outcomes	Topics	Teachin Learn Activ	g and ing rity	Assessment Tool	Number of Hours
1,2	CO 1	 A. Concepts, Principle, Perspectives and Approaches in Risk Assessment and Management Risk and risk analysis Vulnerability CCA & CCM Resilience DRM Risk Management Frameworks and Approaches 	 Lectudiscu SCL 	ire- ssion + PBL	 Assignments Class participation/ recitation Exam 1 	6
3,4,5, 6	CO 2	 B. Hazards, Exposures and Susceptibility Hydro-meteorological Geological Biological C. Vulnerability and Sensitivity Assessment Landscape Approach Sectoral VA Index-based D. Assessing adaptive capacities 	 Lectudiscu Grouwork discu SCL 	ure- ssion p shops/ ssions + PBL	 Class participation/ recitation Assignments Exercises Exam 1 	6
7, 8	CO 2	 E. Computing for and evaluating risks Tolerable risk Acceptable risk Worse case risks 				6
9	CO 2	G. Multi-hazard risk assessment	• Lectu discu	ire- ssion	 Class participation/ recitation Assignments 	3

10,11	CO 2, CO 3	 Calculating multi-hazard risks Probabilistic Deterministic H. Climate Change Adaptation and Mitigation Stakeholders engagement/ Participatory Approach Capacity development of stakeholders 	•	Group workshops/ discussions Group reporting SCL + PBL Lecture- discussion Group workshops/ discussions Group reporting SCL + PBL	 Exercises Reports Exam 2 Class participation/ recitation Assignments Exercises Reports Exam 2 	6
12,13		 Prioritization Multi-criteria analysis; Spatial MCA Economic considerations (Sensitivity analysis; BCA; CEA) I. Communicating 	•	Lecture-	• Class	6
	CO 3	Climate and Disaster Risks • Risk communication • Crisis communication • Public disclosure • Enculturation J. Planning for Risk Interventions, CCA and CCM • Conflict resolution and consensus development • Networking and alliance building K. Issues in Assessment, Management and	•	discussion Group workshops/ discussions Group reporting SCL + PBL	participation/ recitation • Assignments • Exercises • Reports • Exam 2	

		Governance for Climate Risks			
		Management			
14	CO 1-3	 L. Synthesis Climate Change and its Impact on Food Security, Human Health and Well-being 	Group reports and sharing SCL + PBL	Assignments Reports	3

Assessment	Course	Weight in final	Minimum average for
Task	outcomes	grade	satisfactory performance
Midterm exam	1,2,3,4	30	To follow grading scheme of host
Final exam	1,2,3,4	30	university
Case analysis	3,4	20	
Assignments	1,2,3,4	10	
Class	1,2,3,4	10	
participation			

Specialization Elective Courses:

Decision Support System for Food Security in a Changing Climate Course Description: Knowledge databases, utility of geo-portals and climate models, and tools for improved decision-making for climate change interventions

Climate Change, Vulnerability and Adaptation

Course Description: Covers concepts and techniques of impact and vulnerability assessment to climate change by utilizing dynamic and empirical models in a region and/or sector of the economy by using statistical evaluation techniques. Results of the assessment is used for the preparation of climate change adaptation plans and action.

Life Cycle and System Analysis

Course Description: Tools, methods and approaches in assessing and managing climate risks, particularly those that impact food security; issues and challenges in climate risk management.

Geoinformatics

Course Description: Covers overview of IS, its applications, algorithms and general methodology, functionality of its components and the interrelationships between IS and other sciences and technologies, includes practical assignments concerned database building, data analysis, modelling, cartographic production and data transfer.

Dynamics of Climate Change and Environment

Course Description: Effect of climate change on coastal environment, adaptation and mitigations strategies, international cooperation that mitigate climate change impacts and case studies

Environmental Communication

Course Description: Application of environmental communication principles, strategies, and techniques to address risks, controversies, and crises associated with the environment.

Governance Framework for DRR and CCA

Course Description: Covers different theories, development and governance concepts, values and interventions relevant to development contexts; devise innovative, participatory and multi-disciplinary approaches to respond to development and governance issues and concerns affecting organizations, communities and societies; design and implement research and technical assistance programmes on development management and governance.

Specialization Area: Public Policy and Economics

Specialization Outcomes

After completing the MS FSCC Public Policy and Economics specialization/track, the student should be able to have:

- 1. Sufficient appreciation and understanding of economic theories for analyzing food security and climate change issues and problems;
- 2. The ability to conduct economic valuation of natural and environmental goods, services and resources;
- 3. The capacity to conduct policy analysis for addressing food security problems and climate change impacts in relation to natural resource and environmental management; and
- 4. Enhanced research capacity and ability to provide evidence-based solutions to food security and climate change problems.

Core Specialization Course:

Course Title: Economics and Policy Issues in Food Security and Climate Change

Course Description: Economic theories and the policy issues on the interrelationships of food security and climate change

Prerequisite: Consent of instructor

Course Credit: 3 units

Course Goal: For the students to have sufficient appreciation and understanding of how economic theories are used in the analysis of policy issues relating to food security and climate change

Course Outcomes:

After completing the course, the student should be able to:

- 1. Identify the policy issues and concerns in food security and climate change;
- 2. Discuss the economic theories and concepts related to food security and climate change; and
- 3. Distinguish among the different policies and programmes for addressing food security and climate change problems and policy issues.

Course Mapping:

Course Outcomes		Professional Domains			Specialization			
	IJ	omain	S		Oute	omes		
	PM	DO	RE	1	2	3	4	
CO1: Identify the policy issues and concerns in			/	/				
food security and climate change								
CO2: Discuss the economic theories and concepts	/	/	/	/	/	/	/	
related to food security and climate change								

Course Content:

Week	Course	Topics	Teaching and	Assessment	Number
	Outcomes		Learning Activity	Tool	of
					Hours
1	CO1	 I. Economic Perspective and Policy Issues on Food Security and Climate Change a. Economic growth and sustainable development b. Food security, climate change, and poverty linkage c. Economic impacts of climate change on agriculture and food security 	Lecture, group discussion, video presentation	Diagnostic test	3 hours
2-4	CO2	 II. Economic Concepts Related to Food Security and Climate Change a. Supply, demand, price, and market b. Costs, benefits, and values c. National income accounting d. Green economy 	Lecture, group discussion	Quizzes, Exercises	9 hours
5-6	CO2	 III. Market Efficiency and Market Failure related to Food Security and Climate Change a. Economic efficiency and market system b. Market failure, externalities, and public goods 	Lecture, Economic game, Group discussion, Debate	Homework Quizzes	6 hours

		c. Property rights,			
		and equity			
		d. Public policy and			
		intervention			
7-8	CO1. CO2	IV. Protecting Food	Article review and	Presentation	6 hours
	,	Security through	presentation.	mark	-
		Adaptation to Climate	Lecture-discussion	midterm	
		Change		exam	
		a Living with		(topics 1.4)	
		uncertainty and		(10)103 1 4)	
		managing new			
		ricks			
		h Strongthoning			
		0. Suchgulening			
		resilience and			
		managing change			
0.10		c. Other policies	D 1' '	D	(1
9-10	003	V. Protecting Food	Policy paper review,	Paper	6 nours
		Security through	Lecture,	review	
		Mitigation of Climate	Group discussion	submission	
		Change			
		a. Reducing			
		emissions			
		b. Sequestering			
		carbon			
		c. Ecosystem/sector			
	~~~	specific policies			0.1
11-13	CO3	VI. National	Lecture-discussion,	Reaction	9 hours
		Programmes for Food	Guest lectures from	paper	
		Security and Climate	stakeholders (private	submission	
		Change	and public),	Quiz	
		a. Production	Attendance in		
		support and R&D	seminar or forum		
		b. Food price			
		stabilization,			
		buffer stocks and			
		food subsidies			
		c. Marketing			
		assistance and			
		producer-buyer			
		linkages			
		d. Infrastructure and			
		communication			
		support			
		e. Disaster			
		preparedness,			
		prevention and			
		coping			

Course Analysis for Economics and Policy Issues in Food Security and Climate Change

		f. Indigenous			
		people safeguards			
14-15	CO3	VII. Economic and	Lecture discussion,	Paper	6 hours
		Policy Support for	Guest lectures from	submission	
		Integrating Climate	stakeholders, Group		
		Change in Food	discussion	Evaluation	
		Security		test	
		a. Capacity-building			
		for policy			
		analysis			
		b. Monitoring and			
		evaluation of CC-			
		FS programmes			
		c. Enabling policies			
		and institutions			
		d. D. Strengthening			
		regional and			
		international			
		economic			
		cooperation			
Exams	(Midterm an	d Final)			3 hours

**Course Requirements:** Quizzes, Exams, Homework, Paper submission, Oral presentation, Diagnostic and evaluation tests

Assessment Task	Course	Weight in	Minimum Average for
	Outcome	<b>Final Grade</b>	Satisfactory Performance
Diagnostic and	CO1, CO2,	10%	65-80% or B
evaluation tests	CO3		
Quizzes	CO2	10%	65-80% or B
Exams	CO1, CO2,	40%	65-80% or B
	CO3		
Homework	CO2	10%	65-80% or B
Paper submission	CO3	20%	65-80% or B
Oral presentation	CO1, CO2	10%	65-80% or B

Course Title: Economic Valuation for Food Security and Climate Change

**Course Description:** Characteristics and services of natural resources and environment; economic concepts and valuation techniques applied to food security and climate change issues.

Prerequisite: Consent of instructor

Course Credit: 3 units

**Course Goal:** For the students to acquire knowledge on welfare economics and analytical tools for estimating the economic values of natural resources and the environment in relation to food security and climate change

## **Course Outcomes:**

After completing the course, the student should be able to:

- 1. Discuss the needs of economic valuation for non-market goods and services related to food Security and climate change issues;
- 2. Identify types of economic values and appropriate valuation techniques; and
- 3. use the valuation techniques to estimate benefits and costs associated with welfare changes

## **Course Mapping**

Course Outcomes	Professional Domains			Specialization Outcomes			
	PM	DO	RE	1	2	3	4
CO1: discuss the needs of economic valuation for	/		/	/	/	/	/
non-market goods and services related to food							
security and climate change issues							
CO2: identify types of economic values and			/	/	/	/	/
appropriate valuation techniques							
CO3: use the valuation techniques to estimate			/	/	/	/	/
benefits and costs associated with welfare							
changes							

## **Course Content:**

Week	Course	Topics	Teaching and	Assessment	Number
	Outcomes		Learning	Tool	of Hours
			Activity		
1	CO1	I. Introduction and	Watching	Diagnostic test	6 hours
		Overview	video,		
		a. Roles and	Lecture-		
		importance of	discussion		

		economic			
		valuation			
		b. Functions and			
		services of nature			
		c. Definition of value			
		and benefit			
2-3	CO2	II. Economic	Brain	Quiz	6 hours
		Valuation for Policy	storming,		
		Application	Lecture		
		a. Classification of	Group		
		economic value	discussion		
		b. Marginal. non-			
		marginal, and total			
		value			
		c Policy applications			
		and decision tools			
4-5	CO2 CO3	III Economic Theory	Lecture	Homework	6 hours
1.5	002,005	of Value and	Individual	Exercises	0 nouis
		Measurement	exercises	EXercises	
		a Consumer welfare	exercises		
		measurement			
		h Producer welfare			
		0. I louucei wellate measurement			
		a The environment			
		c. The chvironment			
		d D Valuation			
		u. D. Valuation			
67	CO2 CO3	IV Direct Penefit	Looturo	Dragantation	6 hours
0-7	$CO_{2}, CO_{3}$	Valuation: Contingent	Individual	Group	0 110015
		Valuation Method	presentation of	evercises	
		(CVM)	voluction	Mid torm	
		(CVIVI)	study	avam for	
		a. Conceptual	Group	topics 1 4)	
		noundation and	Gloup	topics 1-4)	
		h Voluction	based		
		b. Valuation	Dased		
		store of analysis	exercises		
		steps of analysis			
00		U Direct Dereft	Lastura	Dreagentation	6 10
8-9	102,003	v. Direct Benefit	Lecture,	rresentation	o nours
		valuation: Unoice	main and a second	diaguagian	
		Experiment (CE)	presentation of	discussion	
		a. Conceptual	valuation	Eveneises	
		noundation and	Study,	Exercises	
		h Valuation	Group		
		D. Valuation	computer-		
		tecnniques and	based		
		steps of analysis	exercises		
		c. Case studies			

10-11	CO2, CO3	VI. Indirect Benefit Valuation: Travel	Lecture,	Presentation	6 hours
		Cost Method (TCM)	presentation of	discussion	
		a. Conceptual	valuation		
		foundation and	study,	Exercises	
		model	Group		
		b. Valuation	computer-		
		techniques and	based exercises		
		steps of analysis			
12 12	CO2 CO3	c. Case studies	Lastura	Dragontation	6 hours
12-15	$CO_{2}, CO_{3}$	Vil. maneet Benefit Valuation: Hedonic	Individual	and	0 nours
		Pricing Method	presentation of	discussion	
		(HPM)	valuation		
		a. Conceptual	study,	Exercises	
		foundation and	Group		
		model	computer-		
		b. Valuation	based exercises		
		techniques and			
		steps of analysis			
14 15	<u> </u>	c. Case studies	Tastana	Durantet	(1
14-15	002,003	VIII. Secondary	Lecture,	Presentation	6 hours
		Renefit transfer (BT)	nresentation of	discussion	
		a Concentual	valuation	discussion	
		foundation and	study.	Exercises	
		model	Group		
		b. Valuation	computer-		
		techniques and	based exercises		
		steps of analysis:			
		Value transfer			
		c. Valuation			
		techniques and			
		steps of analysis:			
		d Case studies			
16	CO2 CO3	IX Other Valuation	Lecture	Presentation	6 hours
	002,005	Approaches	Individual	and	0 1100115
		a. Conventional	presentation of	discussion	
		market valuation	valuation		
		b. Life cycle	study,	Exercises	
		assessment	Group		
			computer-	Evaluation	
	061		based exercises	test	2.1
Exams (Midterm and Final) 3 hours					

**Course Requirements:** Quizzes, Exams, Homework, Paper submission, Oral presentation, Diagnostic and evaluation tests

#### Assessment:

Assessment Task	Course	Weight in	Minimum Average for
	Outcome	<b>Final Grade</b>	Satisfactory Performance
Diagnostic and	CO1, CO2,	10%	65-80% or B
evaluation tests	CO3		
Quizzes	CO1	5%	65-80% or B
Exams	CO1, CO2,	40%	65-80% or B
	CO3		
Homework	CO2	5%	65-80% or B
Exercises	CO2, CO3	25%	65-80% or B
Oral presentation	CO1, CO2,	15%	65-80% or B
	CO3		

## **Specialization Elective Course:**

International Trade

Course Description: Deals with the causes of trade and effects on food security and climate change.